
KonaKart JavaScript Tiles

 3rd January 2018

DS Data Systems (UK) Ltd.,
9 Little Meadow
Loughton, Milton Keynes
Bucks
MK5 8EH
UK

Introduction
What are tiles?

KonaKart tiles can be regarded as building blocks for creating an eCommerce application which can be
easily integrated into a front end system such as a CMS (Content Management System) or portal. Each tile
(or aggregation of similar tiles) has a template, a style sheet and a JavaScript file which control the look and
feel as well as the functionality. The tiles communicate with a KonaKart server using the KonaKart JSON
APIs called asynchronously from the JavaScript using AJAX.

What's the purpose of tiles?

KonaKart has been designed to provide loose coupling between the storefront application and the
eCommerce server. The eCommerce server is a service (which may also be cloud based) that provides all
eCommerce functionality through JSON APIs. This architecture lends itself well for the integration of the
functionality into existing front end systems. A typical approach for displaying products and adding a
shopping cart into a CMS is to call the KonaKart APIs from the CMS and to manually integrate the data
received from KonaKart. KonaKart tiles greatly simplify this process because they provide an integration
point at a higher level than the pure APIs. They provide functional widgets that already have a template
based UI design and that autonomously capture events and communicate with the KonaKart server.

How can tiles be used?

In the case of a CMS, the tiles may be placed anywhere on a page in order to provide seamless integration
with the other content on the page. For example, in one page you may wish to provide a carousel of
scrollable products that match the content described on the page.

You may decide to include an “Add To Cart” button for each carousel product. In this case, when the button is
clicked it will automatically communicate with the KonaKart server to add the product to the cart and also if
the popup cart tile is included in the page, it will receive the notification and update itself with the new
contents.

Architecture
The tiles are designed so that they can be used independently allowing you to integrate only the eCommerce
functionality that you require anywhere on the page. Each tile may be positioned separately.

As an example let's take the product tile which is a tile that displays a product summary as shown below:

It has an underscore template (http://underscorejs.org/) that allows you to easily modify the layout of the tile
without touching any of the JavaScript code. It also has a CSS file containing the styles and a JavaScript file
that controls the functionality, so that whenever a button is clicked, an action is performed and if present,
other tiles are invoked.

In this particular case the CSS and JavaScript files are the same ones that are also used for the product
details tile. In some cases, more than one tiles will share the same CSS and JavaScript files although each
tile always has it's own template.

http://underscorejs.org/

Installation
KonaKart tiles are automatically installed during the installation of the Enterprise Extensions. A konakart_tiles
webapp is installed under the webapps directory. The webapp contains the following directories:

html directory

This directory contains a list of HTML files which provide examples of how the individual tiles may be used
and positioned on a page. Let's continue using the product tile as an example.

The script contained in the html file may be seen above. It defines the id of the product that needs to be
displayed in the tile and contains a div (<div id="prod-tile"></div>) where to position the tile. Also, the tile may
be configured to decide whether the “add to cart” and “add to wishlist” links should be enabled. The KonaKart
engine is called to get the product and then the tile is rendered by calling kk.renderProdTile(kkProd,
kkProdTileConfig).

html/template directory

This directory contains the tile underscore templates. More information regarding the templates may be
found at the following link http://underscorejs.org/#template . Each tile has a template which is used to render
the tile. The template is compiled and at render time, it is passed data (e.g. product data or cart data) which it
uses to populate the generated HTML. These templates may be modified in order to customize the
generated look and feel of each tile.

styles directory

This directory contains a number of CSS files that provide style information for the tiles. If the template of a

http://underscorejs.org/#template

tile is modified to include a new style, then this new style should be included in the appropriate CSS file.
Some of the CSS files provide styles for more than one tile.

script directory

The script directory contains the JavaScript files that control the individual tiles. Each file may control one or
more tiles. Amongst other things, the JavaScript is responsible for creating and populating the tiles with data
from the KonaKart engine and also for managing events such as button clicks once the tiles have been
rendered.

gensrc directory

All content within the gensrc directory is dynamically created by running the ant build file (build.xml) directly
under the konakart_tiles directory. It isn't populated directly after an Enterprise Installation. This directory
contains script, html and styles sub directories although in this case all of the CSS and JavaScript files have
been compressed and minimized and the templates have been added to the minimized JavaScript file. The
files under gensrc are typically what you would use in a production environment.

Eclipse Project
The webapp includes a .classpath file and .project file so that it can easily be imported into Eclipse for
development.

Enable JSON
In order for the tiles to send and receive information from the KonaKart engine, you must ensure that the
JSON APIs have been enabled. The process for enabling the APIs is explained in detail in the standard User
Guide so here we will just give brief instructions.

A convenient way to enable JSON services is to run the enable_JSON ANT task provided in the build.xml
file in the custom directory of the standard installation as follows:

C:\Program Files\KonaKart\custom>bin\kkant enable_JSON
Buildfile: build.xml
enable_JSON:
enable_JSON_warning:
enable_JSON_enterprise:
[echo] Fix konakart web.xml to start-up JSON
BUILD SUCCESSFUL
Total time: 0 seconds

Instructions for modifying the web.xml file manually are in the User Guide.

It's important to be aware that enabling all of the JSON APIs on the internet can pose a security risk. Please
read the section titled “Using the JSON APIs to build a JavaScript client” in the KonaKart User Guide
which explains the precautions that you should take.

Try a tile
The most complete tile to try out is store.html which assembles all of the tiles into a storefront application.
The URL for this tile after a standard install on port 8780, is
http://localhost:8780/konakart_tiles/html/store.html . The same tile using the minified JavaScript and CSS
can be found at http://localhost:8780/konakart_tiles/gensrc/html/store.html after performing a build (explained
later in this document).

http://localhost:8780/konakart_tiles/gensrc/html/store.html
http://localhost:8780/konakart_tiles/html/store.html

Configuration
The JavaScript file used to configure the tiles is called kk-configure.js. The configuration variables are
annotated and hopefully easy to understand.

As can be seen above, you can configure the location of the KonaKart engine where the JSON requests are
sent and other parameters such as the default locale and default currency.

If you set kkRoot to http://www.konakart.com/konakart/ it will use the JSON APIs of the demo application
running on the KonaKart server.

By default, the configuration variable KKSolrEnabled is set to null so the value is looked up from the
KonaKart database. If you know that Solr will (recommended) or will not be enabled then it is more efficient
to set the value of this variable to true or false. The current implementation of the facets tile only shows
manufacturer and other facets when Solr is enabled.

http://www.konakart.com/konakart/

Development
As mentioned previously the konakart_tiles webapp includes a .classpath file and .project file so that it can
easily be imported into Eclipse for development.

Most of the JavaScript files control one or more tiles. At the top of each file there is a short description
informing you which tiles it controls. e.g. for kk-prodTile.js the comment is:

Some exceptions are:

kk-tile.js

This contains code that is common to all tiles. The utility methods include methods to get a template, to
manage the session, to retrieve messages from the message catalog and to create a common template
context which is the data passed to all templates when they generate the tile HTML.

kk-formTiles.js

This file contains mainly form validation code as well as some other utility methods related to forms. It is
used by the tiles that contain forms.

kk-configure.js

This file contains configuration variables that may be modified to configure your system.

kk-store.js

This file is only used by store.html which is a test HTML file that uses all of the tiles to create a storefront. It
contains code that starts the backbone router (http://documentcloud.github.io/backbone/#Router) and that
sets up the front page.

I18N
Messages

All messages are retrieved from a JavaScript message catalog under script/i18n. The name of a message
catalog is in the format kk-{locale}.js so for example could be kk-en_GB.js or kk-es_ES.js . The message
catalog also defines the format for dates and the decimal point and thousand separators for numbers. The
messages are grouped by tile.

A typical message catalog uses the format shown above. The locale of the catalog must be entered in the
first line which could for example be kkMsgMap[“es_ES”] for Spanish.

The default locale is set in kk-configure.js and there must be a matching message catalog for this locale.

http://documentcloud.github.io/backbone/#Router

KonaKart uses the Polyglot JavaScript library (http://airbnb.github.io/polyglot.js/) to manage the message
catalogs.

In order to dynamically change locale there is a method in kk-tile.js:

Currencies

The currencies are defined in a JavaScript file called kk-currencies.js under script/i18n.

The default currency code is defined in kk-configure.js and a currency mtching the default currency must
exist in kk-currencies.js. If your default currency is not GBP, EUR or USD, you may add a new entry.
KonaKart uses the accounting JavaScript library (http://openexchangerates.github.io/accounting.js/) to
format currencies.

In order to dynamically change currency you must set the variable kkCurrencyCode to the currency code of
the new currency.

KonaKart Engine APIs
The JavaScript calls to the KonaKart engine are identical to the standard KKEngIf API calls. The Javadoc for
these API calls may be found at http://www.konakart.com/javadoc/server/com/konakart/appif/KKEngIf.html .
When called from JavaScript they are asynchronous and use a callback function to return results.

http://www.konakart.com/javadoc/server/com/konakart/appif/KKEngIf.html
http://openexchangerates.github.io/accounting.js/
http://airbnb.github.io/polyglot.js/

Production
In development mode the tiles include many JavaScript files and many CSS files. Also the templates are
read as files from disk when a tile is rendered.

Once you have finished customizing and developing your own tiles you can run an Ant task that performs the
following:

1. Creates a gensrc directory under konakart_tiles with all files required for production

2. Creates a single minimized JavaScript file for all of the tile JavaScript files. All of the templates and
message catalogs are included in this single file called kk-tile-gen.min.js.

3. Creates a single minimized CSS file for all of the tile CSS files. It is called kk-tile-gen.min.css.

4. When copied over to the gensrc area, all of the tile HTML files are modified to remove the old
includes and include the new minimized includes.

C:\Program Files (x86)\KonaKart\webapps\konakart_tiles>..\..\custom\bin\kkant
Buildfile: C:\Program Files (x86)\KonaKart\webapps\konakart_tiles\build.xml

clean:
 [echo] Cleanup...

createGensrc:
 [echo] Creating directories for generated source...
 [mkdir] Created dir: C:\Program Files (x86)\KonaKart\webapps\konakart_tiles\gensrc
 [mkdir] Created dir: C:\Program Files (x86)\KonaKart\webapps\konakart_tiles\gensrc\script
 [mkdir] Created dir: C:\Program Files (x86)\KonaKart\webapps\konakart_tiles\gensrc\html
 [mkdir] Created dir: C:\Program Files (x86)\KonaKart\webapps\konakart_tiles\gensrc\styles
 [mkdir] Created dir: C:\Program Files (x86)\KonaKart\webapps\konakart_tiles\gensrc\images
 [mkdir] Created dir: C:\Program Files (x86)\KonaKart\webapps\konakart_tiles\gensrc\bin

compileBuildUtils:
 [echo] Compiling TileBuildUtils
 [javac] Compiling 1 source file to C:\Program Files (x86)\KonaKart\webapps\konakart_tiles\gensrc\bin

minimizeJS:
 [echo] Creating JavaScript file from templates
 [echo] Creating single JavaScript file
 [echo] Minimizing JavaScript

minimizeCSS:
 [echo] Creating single CSS file
 [echo] Minimizing CSS

processHTML:
 [echo] Processing HTML files

copyJS:
 [echo] Copying JS files
 [copy] Copying 8 files to C:\Program Files (x86)\KonaKart\webapps\konakart_tiles\gensrc\script

copyCSS:
 [echo] Copying CSS files
 [copy] Copying 34 files to C:\Program Files (x86)\KonaKart\webapps\konakart_tiles\gensrc\styles

copyImages:
 [echo] Copying image files
 [copy] Copying 31 files to C:\Program Files (x86)\KonaKart\webapps\konakart_tiles\gensrc\images

tidyUp:
 [echo] Tidy Up
 [delete] Deleting: C:\Program Files (x86)\KonaKart\webapps\konakart_tiles\gensrc\script\kk-template-gen.js
 [delete] Deleting: C:\Program Files (x86)\KonaKart\webapps\konakart_tiles\gensrc\script\kk-tile-gen.js
 [delete] Deleting: C:\Program Files (x86)\KonaKart\webapps\konakart_tiles\gensrc\styles\kk-tile-gen.css

build:

BUILD SUCCESSFUL
Total time: 5 seconds

C:\Program Files (x86)\KonaKart\webapps\konakart_tiles>

Part of the build is performed by a Java class called TileBuildUtils.java found under
konakart_tiles/src/com/dsdata/util . It has several methods called by Ant during the build. The JavaScript and
CSS files that are added to the minimized files are defined in Static variables within TileBuildUtils.java as
shown below:

You may modify the included files depending on how many tiles you are using and whether you have created
any of your own tiles or added new message catalogs etc.

store.html

This a tile that aggregates all tiles into a storefront application. As can be seen below, the html defines all of
the tile placeholder and calls kk.storeInit() which is in kk-store.js.

The initialization code starts the backbone router (http://documentcloud.github.io/backbone/#Router) as well
as rendering the front page and setting the position for each tile.

The backbone router allows you to use the forward and back browser buttons as well as to get to any tile
using a URL. It isn't enabled by default since it may not be required if the tiles are integrated within a CMS.

http://documentcloud.github.io/backbone/#Router

	Introduction
	Architecture
	Installation
	Configuration
	Development
	Production
	store.html

